埼玉大学幾何セミナー
On a motivic invariant of the arc-analytic equivalence / エルミート丹野接続と接触リーマン多様体の Bochner 型曲率不変量
会場
埼玉大学 大学院理工学研究科棟5階 数学研究室1 ( このページ の15番の建物)
14:30--15:30
講演者
Jean-Baptiste Campesato (Saitama University, JSPS post doc fellow)
タイトル
On a motivic invariant of the arc-analytic equivalence
アブストラクト
The first part of this talk is devoted to the arc-analytic equivalence which is an equivalence relation on Nash function germs (i.e. real analytic function germs which are semialgebraic).
Next, to a Nash function germ we associate a motivic zeta function whose construction is analog to the one of Denef–Loeser. This is a formal power series with coefficients in a Grothendieck ring of $\mathcal{AS}$-sets up to $\mathbb{R}^*$-equivariant $\mathcal{AS}$-bijections over $\mathbb{R}^*$, a real analog of the Grothendieck ring of G. Guibert, F. Loeser and M. Merle. This zeta function is an invariant of the arc-analytic equivalence.
This zeta function generalizes the previous construction of G. Fichou. Its extra structure allows us to get a convolution formula from which we derive a partial classification of Brieskorn polynomials by showing that the arc-analytic type of a Brieskorn polynomial determines its exponents.
会場
理学部2号館5階・数学演習室1(通常の会場と異なります)
16:00--
Tea and coffee
16:20--17:20
講演者
佐々木 大輔 (埼玉大学)
タイトル
エルミート丹野接続と接触リーマン多様体の Bochner 型曲率不変量
アブストラクト
On a contact Riemannian manifold, considering the curvature of hermitian Tanno connection, we introduce Bochner type curvature tensors. Some of them are invariant under CR conformal change and so are the others if and only if the associated almost complex structure is integrable.