1. ホーム
  2. 埼玉大学幾何セミナー
  3. The Wulff construction for convex integrands / On the Grothendieck ring of arc-symmetric sets

埼玉大学幾何セミナー

2017年3月9日(木) 13:40--15:50

The Wulff construction for convex integrands / On the Grothendieck ring of arc-symmetric sets

会場

埼玉大学 大学院理工学研究科棟5階 数学研究室1 ( このページ の15番の建物)

13:40--14:40

講演者

Hu He Han (韓呼和) Yokohama National University (横浜国立大学)

タイトル

The Wulff construction for convex integrands

アブストラクト

For any given Wulff shape $\mathcal{W}$, we can define the unique continuous function $S^{n}\to \mathbb{R}_{+}$ called convex integrand, denoted by $\gamma_{{}_{\mathcal{W}}}$. In this talk, we show that, for any Wulff shapes $\mathcal{W}_{1}$ and $\mathcal{W}_{2}$, the equality $d(\gamma_{{}_{\mathcal{W}_{1}}}, \gamma_{{}_{\mathcal{W}_{2}}})= h(\mathcal{W}_{1}, \mathcal{W}_{2})$ holds, where $d$ is the maximum distance of the function space consisting of convex integrands and $h$ is the Pompeiu-Hausdorff distance of the space consisting of Wulff shapes.  This is a joint work with Takashi NISHIMURA.

14:50--15:50

講演者

Goulwen Fichou (University of Rennes 1)

タイトル

On the Grothendieck ring of arc-symmetric sets

アブストラクト

Grothendieck rings have been investigated in algebraic geometry after motivic integration. In real algebraic geometry, several Grothendieck rings are of interest, depending on the class of functions one is interested in. We focus in the talk on arc-symmetric sets, and give a full description of the corresponding Grothendieck ring.

After

Seminar dinner

ページトップへ
ページトップへ